Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 47, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430379

RESUMO

Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis. In this study, we have conducted an exploration of the AAT gene family in P. vulgaris. In this research, we identified 84 AAT genes within the P. vulgaris genome sequence and categorized them into 12 subfamilies based on their similarity and phylogenetic relationships with AATs found in Arabidopsis and rice. Interestingly, these AAT genes were not evenly distributed across the chromosomes of P. vulgaris . Instead, there was an unusual concentration of these genes located toward the outer edges of chromosomal arms. Upon conducting motif analysis and gene structural analysis, we observed a consistent presence of similar motifs and an intron-exon distribution pattern among the subfamilies. When we analyzed the expression profiles of PvAAT genes, we noted tissue-specific expression patterns. Furthermore, our investigation into AAT gene expression under rhizobial and mycorrhizal symbiotic conditions revealed that certain genes exhibited high levels of expression. Specifically, ATLa5 and LHT2 was notably upregulated under both symbiotic conditions. These findings point towards a potential role of AATs in the context of rhizobial and mycorrhizal symbiosis in P. vulgaris, in addition to their well-established regulatory functions.


Assuntos
Arabidopsis , Phaseolus , Rhizobium , Simbiose/genética , Phaseolus/genética , Filogenia , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511479

RESUMO

Cysteine-rich receptor-like kinases (CRKs) are a type of receptor-like kinases (RLKs) that are important for pathogen resistance, extracellular reactive oxygen species (ROS) signaling, and programmed cell death in plants. In a previous study, we identified 46 CRK family members in the Phaseolus vulgaris genome and found that CRK12 was highly upregulated under root nodule symbiotic conditions. To better understand the role of CRK12 in the Phaseolus-Rhizobia symbiotic interaction, we functionally characterized this gene by overexpressing (CRK12-OE) and silencing (CRK12-RNAi) it in a P. vulgaris hairy root system. We found that the constitutive expression of CRK12 led to an increase in root hair length and the expression of root hair regulatory genes, while silencing the gene had the opposite effect. During symbiosis, CRK12-RNAi resulted in a significant reduction in nodule numbers, while CRK12-OE roots showed a dramatic increase in rhizobial infection threads and the number of nodules. Nodule cross sections revealed that silenced nodules had very few infected cells, while CRK12-OE nodules had enlarged infected cells, whose numbers had increased compared to controls. As expected, CRK12-RNAi negatively affected nitrogen fixation, while CRK12-OE nodules fixed 1.5 times more nitrogen than controls. Expression levels of genes involved in symbiosis and ROS signaling, as well as nitrogen export genes, supported the nodule phenotypes. Moreover, nodule senescence was prolonged in CRK12-overexpressing roots. Subcellular localization assays showed that the PvCRK12 protein localized to the plasma membrane, and the spatiotemporal expression patterns of the CRK12-promoter::GUS-GFP analysis revealed a symbiosis-specific expression of CRK12 during the early stages of rhizobial infection and in the development of nodules. Our findings suggest that CRK12, a membrane RLK, is a novel regulator of Phaseolus vulgaris-Rhizobium tropici symbiosis.


Assuntos
Phaseolus , Rhizobium tropici , Rhizobium , Simbiose/genética , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Phaseolus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rhizobium/metabolismo , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/metabolismo
3.
Genes (Basel) ; 13(11)2022 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421782

RESUMO

Sucrose non-fermentation-related protein kinase 1 (SnRK1) a Ser/Thr protein kinase, is known to play a crucial role in plants during biotic and abiotic stress responses by activating protein phosphorylation pathways. SnRK1 and some members of the plant-specific SnRK2 and SnRK3 sub-families have been studied in different plant species. However, a comprehensive study of the SnRK gene family in Phaseolus vulgaris is not available. Symbiotic associations of P. vulgaris with Rhizobium and/or mycorrhizae are crucial for the growth and productivity of the crop. In the present study, we identified PvSnRK genes and analysed their expression in response to the presence of the symbiont. A total of 42 PvSnRK genes were identified in P. vulgaris and annotated by comparing their sequence homology to Arabidopsis SnRK genes. Phylogenetic analysis classified the three sub-families into individual clades, and PvSnRK3 was subdivided into two groups. Chromosome localization analysis showed an uneven distribution of PvSnRK genes on 10 of the 11 chromosomes. Gene structural analysis revealed great variation in intron number in the PvSnRK3 sub-family, and motif composition is specific and highly conserved in each sub-family of PvSnRKs. Analysis of cis-acting elements suggested that PvSnRK genes respond to hormones, symbiosis and other abiotic stresses. Furthermore, expression data from databases and transcriptomic analyses revealed differential expression patterns for PvSnRK genes under symbiotic conditions. Finally, an in situ gene interaction network of the PvSnRK gene family with symbiosis-related genes showed direct and indirect interactions. Taken together, the present study contributes fundamental information for a better understanding of the role of the PvSnRK gene family not only in symbiosis but also in other biotic and abiotic interactions in P. vulgaris.


Assuntos
Micorrizas , Phaseolus , Proteínas Serina-Treonina Quinases , Rhizobium , Micorrizas/fisiologia , Phaseolus/genética , Phaseolus/microbiologia , Filogenia , Proteínas Serina-Treonina Quinases/genética , Rhizobium/fisiologia , Simbiose/genética
4.
Appl Plant Sci ; 10(1): e11454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228912

RESUMO

PREMISE: Agrobacterium rhizogenes-induced hairy root systems are one of the most preferred and versatile systems for the functional characterization of genes. The use of hairy root systems is a rapid and convenient alternative for studying root biology, biotic and abiotic stresses, and root symbiosis in in vitro recalcitrant legume species such as Arachis hypogaea. METHODS AND RESULTS: We present a rapid, simplified method for the generation of composite A. hypogaea plants with transgenic hairy roots. We demonstrate a technique of hairy root induction mediated by A. rhizogenes from young A. hypogaea shoots. The efficacy of the system for producing transgenic roots is demonstrated using an enhanced green fluorescent protein (eGFP) expression vector. Furthermore, the application of the system for studying root branching is shown using the auxin-responsive marker DR5 promoter fused to ß-glucuronidase (GUS). Finally, the success of the hairy root system for root symbiotic studies is illustrated by inoculating hairy roots with arbuscular mycorrhizal fungi. CONCLUSIONS: In this study, we have developed a rapid, efficient, and cost-effective composite plant protocol for A. hypogaea that is particularly effective for root-related studies and for the validation of candidate genes in A. hypogaea during mycorrhizal symbiosis.

5.
Plants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34961093

RESUMO

Macroautophagy/autophagy is a fundamental catabolic pathway that maintains cellular homeostasis in eukaryotic cells by forming double-membrane-bound vesicles named autophagosomes. The autophagy family genes remain largely unexplored except in some model organisms. Legumes are a large family of economically important crops, and knowledge of their important cellular processes is essential. Here, to first address the knowledge gaps, we identified 17 ATG families in Phaseolus vulgaris, Medicago truncatula and Glycine max based on Arabidopsis sequences and elucidated their phylogenetic relationships. Second, we dissected ATG18 in subfamilies from early plant lineages, chlorophytes to higher plants, legumes, which included a total of 27 photosynthetic organisms. Third, we focused on the ATG18 family in P. vulgaris to understand the protein structure and developed a 3D model for PvATG18b. Our results identified ATG homologs in the chosen legumes and differential expression data revealed the nitrate-responsive nature of ATG genes. A multidimensional scaling analysis of 280 protein sequences from 27 photosynthetic organisms classified ATG18 homologs into three subfamilies that were not based on the BCAS3 domain alone. The domain structure, protein motifs (FRRG) and the stable folding conformation structure of PvATG18b revealing the possible lipid-binding sites and transmembrane helices led us to propose PvATG18b as the functional homolog of AtATG18b. The findings of this study contribute to an in-depth understanding of the autophagy process in legumes and improve our knowledge of ATG18 subfamilies.

6.
Sci Rep ; 11(1): 11319, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059696

RESUMO

Target of rapamycin (TOR) is a conserved central growth regulator in eukaryotes that has a key role in maintaining cellular nutrient and energy status. Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts that assist the plant in increasing nutrient absorption from the rhizosphere. However, the role of legume TOR in AM fungal symbiosis development has not been investigated. In this study, we examined the function of legume TOR in the development and formation of AM fungal symbiosis. RNA-interference-mediated knockdown of TOR transcripts in common bean (Phaseolus vulgaris) hairy roots notably suppressed AM fungus-induced lateral root formation by altering the expression of root meristem regulatory genes, i.e., UPB1, RGFs, and sulfur assimilation and S-phase genes. Mycorrhized PvTOR-knockdown roots had significantly more extraradical hyphae and hyphopodia than the control (empty vector) roots. Strong promoter activity of PvTOR was observed at the site of hyphal penetration and colonization. Colonization along the root length was affected in mycorrhized PvTOR-knockdown roots and the arbuscules were stunted. Furthermore, the expression of genes induced by AM symbiosis such as SWEET1, VPY, VAMP713, and STR was repressed under mycorrhized conditions in PvTOR-knockdown roots. Based on these observations, we conclude that PvTOR is a key player in regulating arbuscule development during AM symbiosis in P. vulgaris. These results provide insight into legume TOR as a potential regulatory factor influencing the symbiotic associations of P. vulgaris and other legumes.


Assuntos
Micorrizas/crescimento & desenvolvimento , Phaseolus/enzimologia , Phaseolus/microbiologia , Serina-Treonina Quinases TOR/metabolismo , Regulação da Expressão Gênica de Plantas , Hifas/crescimento & desenvolvimento , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Simbiose
7.
Genes (Basel) ; 10(1)2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658517

RESUMO

Receptor-like kinases (RLKs) are conserved upstream signaling molecules that regulate several biological processes, including plant development and stress adaptation. Cysteine (C)-rich receptor-like kinases (CRKs) are an important class of RLK that play vital roles in disease resistance and cell death in plants. Genome-wide analyses of CRK genes have been carried out in Arabidopsis and rice, while functional characterization of some CRKs has been carried out in wheat and tomato in addition to Arabidopsis. A comprehensive analysis of the CRK gene family in leguminous crops has not yet been conducted, and our understanding of their roles in symbiosis is rather limited. Here, we report the comprehensive analysis of the PhaseolusCRK gene family, including identification, sequence similarity, phylogeny, chromosomal localization, gene structures, transcript expression profiles, and in silico promoter analysis. Forty-six CRK homologs were identified and phylogenetically clustered into five groups. Expression analysis suggests that PvCRK genes are differentially expressed in both vegetative and reproductive tissues. Further, transcriptomic analysis revealed that shared and unique CRK genes were upregulated during arbuscular mycorrhizal and rhizobial symbiosis. Overall, the systematic analysis of the PvCRK gene family provides valuable information for further studies on the biological roles of CRKs in various Phaseolus tissues during diverse biological processes, including Phaseolus-mycorrhiza/rhizobia symbiosis.


Assuntos
Genoma de Planta , Phaseolus/genética , Proteínas Quinases/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Micorrizas/genética , Phaseolus/microbiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Rizoma/genética
8.
Genes (Basel) ; 9(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301366

RESUMO

BYPASS1 (BPS1), which is a well-conserved gene in plants, is required for normal root and shoot development. In the absence of BPS1 gene function, Arabidopsis overproduces a mobile signalling compound (the BPS1 signal) in roots, and this transmissible signal arrests shoot growth and causes abnormal root development. In addition to the shoot and root meristem activities, the legumes also possess transient meristematic activity in root cortical cells during Rhizobium symbiosis. We explored the role of Phaseolus vulgaris BPS1 during nodule primordium development using an RNA-interference (RNAi) silencing approach. Our results show that upon Rhizobium infection, the PvBPS1-RNAi transgenic roots failed to induce cortical cell divisions without affecting the rhizobia-induced root hair curling and infection thread formation. The transcript accumulation of early nodulin genes, cell cyclins, and cyclin-dependent kinase genes was affected in RNAi lines. Interestingly, the PvBPS1-RNAi root nodule phenotype was partially rescued by exogenous application of fluridone, a carotenoid biosynthesis inhibitor, which was used because the carotenoids are precursors of BPS1 signalling molecules. Furthermore, we show that the PvBPS1 promoter was active in the nodule primordia. Together, our data show that PvBPS1 plays a vital role in the induction of meristematic activity in root cortical cells and in the establishment of nodule primordia during Phaseolus-Rhizobium symbiosis.

9.
PLoS One ; 12(8): e0182328, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771548

RESUMO

Legumes participate in two important endosymbiotic associations, with phosphorus-acquiring arbuscular mycorrhiza (AM, soil fungi) and with nitrogen-fixing bacterial rhizobia. These divergent symbionts share a common symbiotic signal transduction pathway that facilitates the establishment of mycorrhization and nodulation in legumes. However, the unique and shared downstream genes essential for AM and nodule development have not been identified in crop legumes. Here, we used ion torrent next-generation sequencing to perform comparative transcriptomics of common bean (Phaseolus vulgaris) roots colonized by AM or rhizobia. We analyzed global gene expression profiles to identify unique and shared differentially expressed genes (DEGs) that regulate these two symbiotic interactions, and quantitatively compared DEG profiles. We identified 3,219 (1,959 upregulated and 1,260 downregulated) and 2,645 (1,247 upregulated and 1,398 downregulated) unigenes that were differentially expressed in response to mycorrhizal or rhizobial colonization, respectively, compared with uninoculated roots. We obtained quantitative expression profiles of unique and shared genes involved in processes related to defense, cell wall structure, N metabolism, and P metabolism in mycorrhized and nodulated roots. KEGG pathway analysis indicated that most genes involved in jasmonic acid and salicylic acid signaling, N metabolism, and inositol phosphate metabolism are variably expressed during symbiotic interactions. These combined data provide valuable information on symbiotic gene signaling networks that respond to mycorrhizal and rhizobial colonization, and serve as a guide for future genetic strategies to enhance P uptake and N-fixing capacity to increase the net yield of this valuable grain legume.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Micorrizas/genética , Micorrizas/metabolismo , Nitrogênio/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Fósforo/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Ciclopentanos/metabolismo , Fungos/fisiologia , Perfilação da Expressão Gênica , Oxilipinas/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA Mensageiro/metabolismo , Rhizobium/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Simbiose
10.
J Vis Exp ; (130)2017 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-29364203

RESUMO

The upstream sequences of gene coding sequences are termed as promoter sequences. Studying the expression patterns of promoters are very significant in understanding the gene regulation and spatiotemporal expression patterns of target genes. On the other hand, it is also critical to establish promoter evaluation tools and genetic transformation techniques that are fast, efficient, and reproducible. In this study, we investigated the spatiotemporal expression pattern of the rhizobial symbiosis-specific nodule inception (NIN) promoter of Phaseolus vulgaris in the transgenic hairy roots. Using plant genome databases and analysis tools we identified, isolated, and cloned the P. vulgaris NIN promoter in a transcriptional fusion to the chimeric reporter ß-glucuronidase (GUS) GUS-enhanced::GFP. Further, this protocol describes a rapid and versatile system of genetic transformation in the P. vulgaris using Agrobacterium rhizogenes induced hairy roots. This system generates ≥2 cm hairy roots at 10 to 12 days after transformation. Next, we assessed the spatiotemporal expression of NIN promoter in Rhizobium inoculated hairy roots at periodic intervals of post-inoculation. Our results depicted by GUS activity show that the NIN promoter was active during the process of nodulation. Together, the present protocol demonstrates how to identify, isolate, clone, and characterize a plant promoter in the common bean hairy roots. Moreover, this protocol is easy to use in non-specialized laboratories.


Assuntos
Nodulação/genética , Rhizobium/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/química , Raízes de Plantas/genética , Regiões Promotoras Genéticas , Rhizobium/química
11.
Plant Physiol ; 172(3): 2002-2020, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27698253

RESUMO

The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the bean (Phaseolus vulgaris)-Rhizobium tropici (Rhizobium) symbiotic interaction. TOR was expressed in all tested bean tissues, with higher transcript levels in the root meristems and senesced nodules. We showed TOR promoter expression along the progressing infection thread and in the infected cells of mature nodules. Posttranscriptional gene silencing of TOR using RNA interference (RNAi) showed that this gene is involved in lateral root elongation and root cell organization and also alters the density, size, and number of root hairs. The suppression of TOR transcripts also affected infection thread progression and associated cortical cell divisions, resulting in a drastic reduction of nodule numbers. TOR-RNAi resulted in reduced reactive oxygen species accumulation and altered CyclinD1 and CyclinD3 expression, which are crucial factors for infection thread progression and nodule organogenesis. Enhanced expression of TOR-regulated ATG genes in TOR-RNAi roots suggested that TOR plays a role in the recognition of Rhizobium as a symbiont. Together, these data suggest that TOR plays a vital role in the establishment of root nodule symbiosis in the common bean.


Assuntos
Phaseolus/enzimologia , Phaseolus/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Autofagia/genética , Parede Celular/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Phaseolus/genética , Phaseolus/ultraestrutura , Fenótipo , Filogenia , Proteínas de Plantas/química , Nodulação/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/ultraestrutura , Análise de Sequência de DNA , Serina-Treonina Quinases TOR/química , Regulação para Cima/genética
12.
BMC Biotechnol ; 16(1): 53, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342637

RESUMO

BACKGROUND: Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. RESULTS: Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. CONCLUSIONS: We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.


Assuntos
Agrobacterium/genética , Perfilação da Expressão Gênica/métodos , Phaseolus/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Protoplastos/fisiologia , Células do Mesofilo/fisiologia , Phaseolus/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Protoplastos/citologia , Transformação Bacteriana/genética
13.
J Integr Plant Biol ; 56(3): 281-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24387000

RESUMO

Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv. Negro Jamapa under nitrate pre-incubation and continuous nitrate conditions. Our results indicate that nitrate pre-incubation, independent of the concentration, did not affect nodule development. However, the continuous supply of nitrate at high concentrations impaired nodule maturation and nodule numbers. Low nitrate conditions, in addition to positively regulating nodule number, biomass, and nitrogenase activity, also extended the span of nitrogen-fixing activity. By contrast, for arbuscular mycorrhizae, continuous 10 and 50 mmol/L nitrate increased the percent root length colonization, concomitantly reduced arbuscule size, and enhanced ammonia transport without affecting phosphate transport. Therefore, in this manuscript, we have proposed the importance of nitrate as a positive regulator in promoting both rhizobial and mycorrhizal symbiosis in the common bean.


Assuntos
Micorrizas/fisiologia , Nitratos/farmacologia , Phaseolus/microbiologia , Phaseolus/fisiologia , Rhizobium/fisiologia , Simbiose/efeitos dos fármacos , Compostos de Amônio/metabolismo , Biomassa , Tamanho Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Micorrizas/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo , Phaseolus/efeitos dos fármacos , Phaseolus/genética , Fenótipo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Rhizobium/efeitos dos fármacos , Rhizobium/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/fisiologia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...